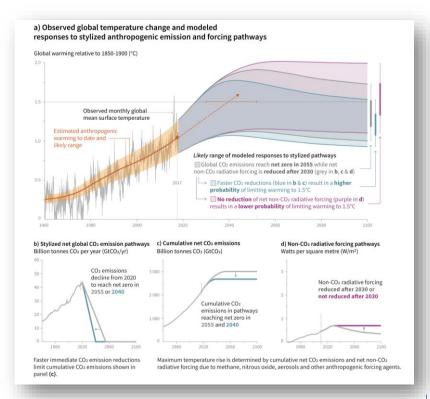


The role of non-CO₂ climate pollutants in meeting ambitious temperature goals

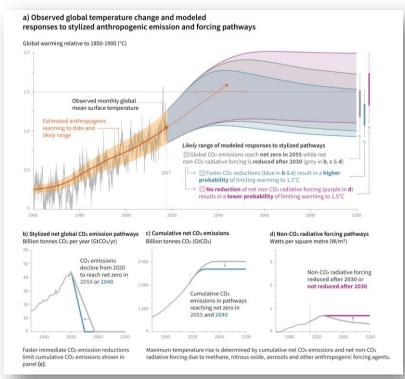
Myles Allen


School of Geography and the Environment and Department of Physics

University of Oxford

Oxford Net Zero

IPCC SR1.5: "Reaching and sustaining **net-zero** global anthropogenic **CO**₂ **emissions** *and* **declining net non-CO**₂ **radiative forcing** would **halt** anthropogenic global warming on multi-decadal timescales (*high confidence*)."



"net non-CO₂ radiative forcing" means net impact on global energy imbalance of climate drivers other than CO_2 affected by human activity, including:

- methane
- aerosols & soot
- nitrous oxide

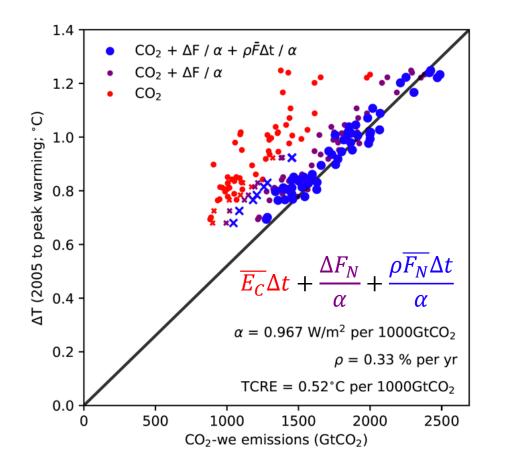
"The maximum temperature reached is then determined by **cumulative net global anthropogenic** CO_2 emissions up to the time of net zero CO_2 emissions (*high confidence*) and the **level of non-** CO_2 radiative forcing in the decades prior to the time that maximum temperatures are reached (*medium confidence*)."

"net non- CO_2 radiative forcing" means net impact on global energy imbalance of climate drivers other than CO_2 affected by human activity, including:

- methane
- aerosols & soot
- nitrous oxide

Quantifying the SR1.5 statement

Human-induced warming (ΔT) over a time-interval (Δt) from a few years to a few decades is proportional to total cumulative carbon dioxide emissions over that time-interval ($\overline{E_C}\Delta t$) plus the change in global energy imbalance due to non-CO₂ human influences on climate (ΔF_N) plus an adjustment to constant non-CO₂ energy imbalance ($\overline{F_N}\Delta t$).


$$\Delta T = \kappa \left(\overline{E_C} \Delta t + \frac{\Delta F_N}{\alpha} + \frac{\rho F_N \Delta}{\alpha} \right)$$

- κ = "Transient Climate Response to Emissions" \approx 0.45 °C per TtCO₂
- α = "Transient Forcing Response to Emissions" \approx 1.0 W/m² per TtCO₂ **GIODALV** \approx AGWP_H/ γ H where γ =0.85 for H=100 years (equating forcing response to steady emissions with AGWP)
- ρ = rate of energy imbalance decline under zero CO₂ emissions \approx 0.3% per year = rate of decline required to give stable temperatures (hence SR1.5 statement)

Warming-equivalent emissions have same impact on ΔT as CO₂ emissions so need to reach net zero to halt global warming

This simple equation predicts peak warming

Warming from 2005 to peak in IPCC mitigation scenarios versus cumulative CO_2 -warming-equivalent emissions.

 Crosses highlight REMIND-MAGPIE simulations with unrealistic non-CO₂ forcing pre-2020.

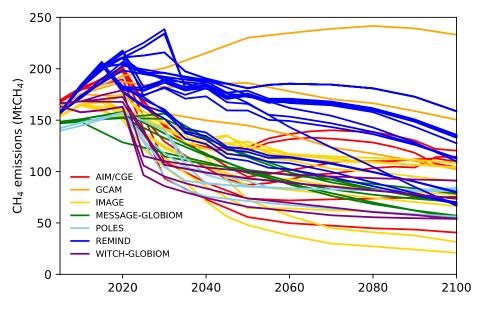
Implications for methane and nitrous oxide

- Key other greenhouse gases contributing to F_N , reported as CO_2 -e using GWP_{100} .
- CO_2 -e emissions of any gas with a lifetime longer than H = 100 years (e.g. nitrous oxide) can be combined with CO_2 to give aggregate long-lived CO_2 -e emissions, E_L
- Interdecadal forcing due any gas with a lifetime much shorter than H (e.g. methane) is given by $F_S = AGWP_H \times E_S$ (CO₂-e emissions x AGWP of CO₂), so...

$$\Delta T = \kappa (\overline{E_L} \Delta t + \gamma H \Delta E_S + \gamma H \rho \overline{E_S} \Delta t)$$

• Using standard values from AR5:

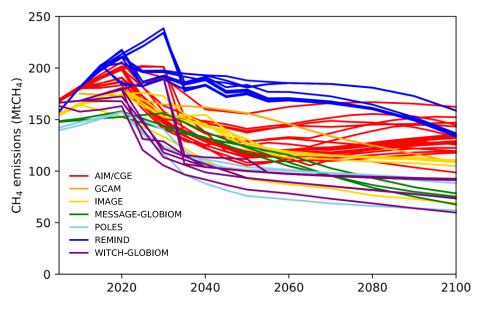
$$\Delta T = \kappa (\overline{E_L} \Delta t + 85 \times \Delta E_S + 0.28 \times \overline{E_S} \Delta t)$$


- Constant 1 tCO₂-e/year methane emissions has same impact as 0.28 tCO_2 /year.
- Change of $\pm 1 \text{ tCO}_2$ -e/year methane emissions has same impact as $\pm 85 \text{ tCO}_2$ total.

Why not just read off required reductions from Integrated Assessment Models (IAMs)?

Biogenic methane emissions

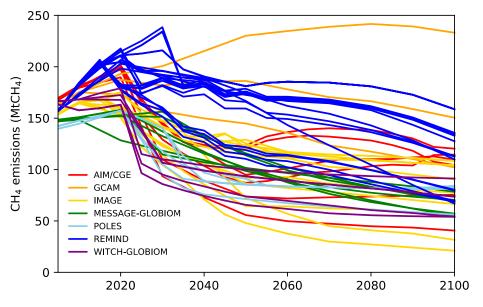
1.5°C-compatible IAM scenarios


- Strong dependence of results on choice of IAM and assumptions of IAM modellers.
- Choice of IAM is even more important than temperature goal for non-CO₂ emissions.

Why not just read off required reductions from Integrated Assessment Models (IAMs)?

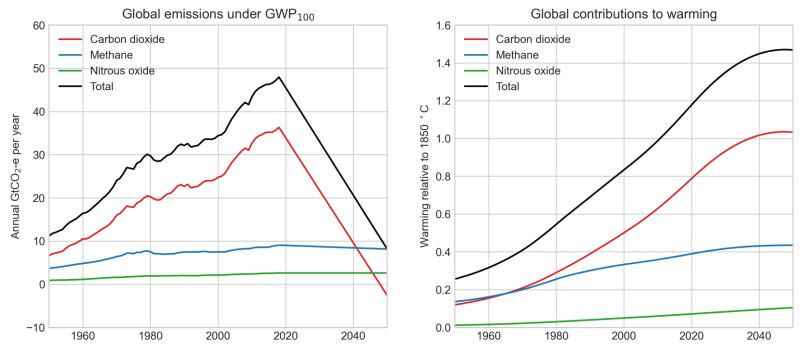
Biogenic methane emissions

2.0°C-lower-compatible IAM scenarios


- Strong dependence of results on choice of IAM and assumptions of IAM modellers.
- Choice of IAM is even more important than temperature goal for non-CO₂ emissions.
- Many scenarios have identical biogenic methane emissions for different temperature goals: set by modellers, not goal.

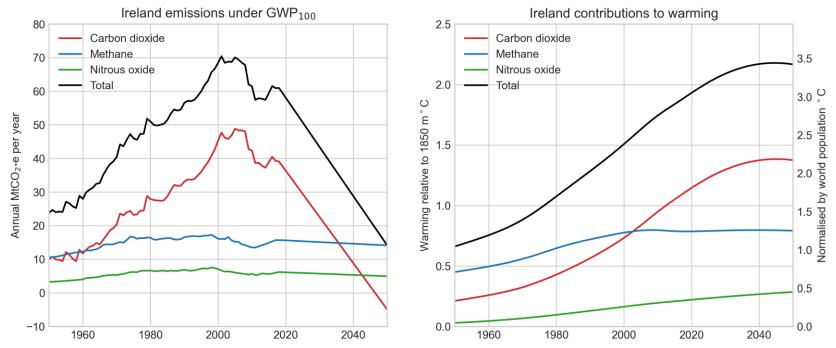
Why not just read off required reductions from Integrated Assessment Models (IAMs)?

Biogenic methane emissions


1.5°C-compatible IAM scenarios

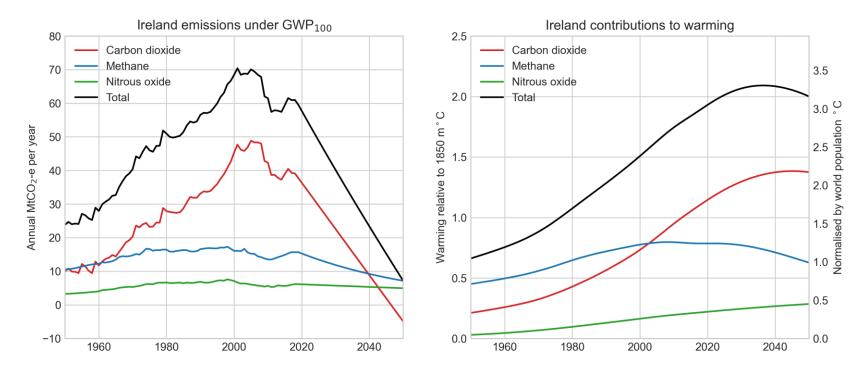
- Strong dependence of results on choice of IAM and assumptions of IAM modellers.
- Choice of IAM is even more important than temperature goal for non-CO₂ emissions.
- Many scenarios have identical biogenic methane emissions for different temperature goals: set by modellers, not goal.

What it takes to halt global greenhouse-gas-induced warming by 2050

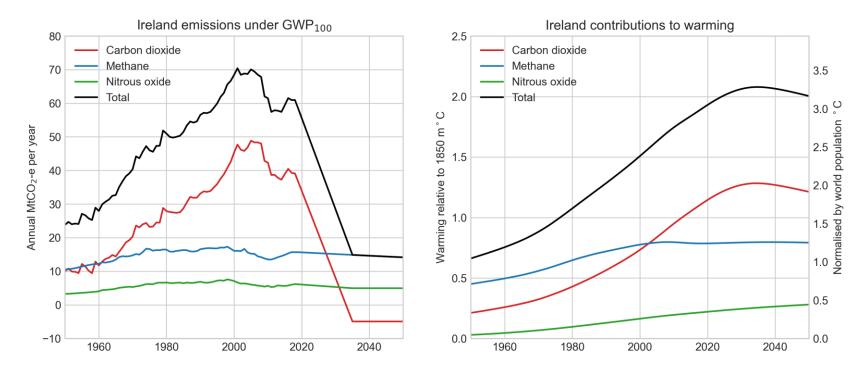


Net zero CO₂-e CO₂+N₂O & 3%/decade reduction in methane

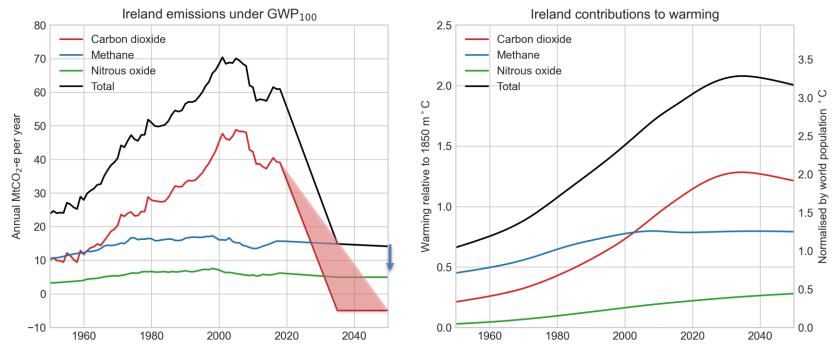
Gütschow et al (2021): PRIMAP-hist v2.2. https://doi.org/10.5281/zenodo.4479172 Warming calculated using formula in Myhre et al (2013): Ch. 8 of IPCC WG1 AR5


What it takes to halt Ireland's greenhouse-gas-induced warming by 2050

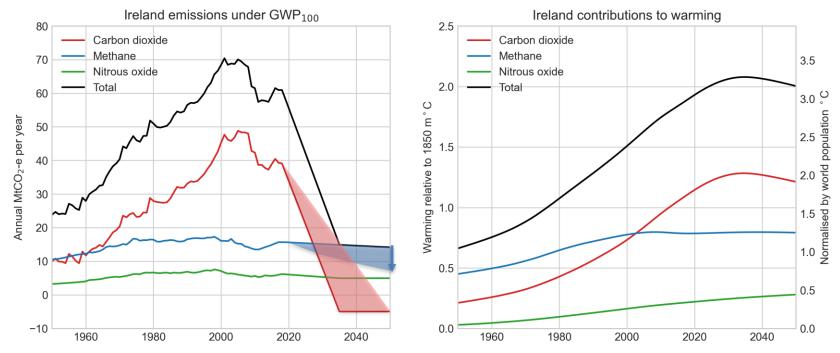
Net zero CO₂-e CO₂+N₂O & 3%/decade reduction in methane


Impact of deeper methane reductions (50% by 2050)

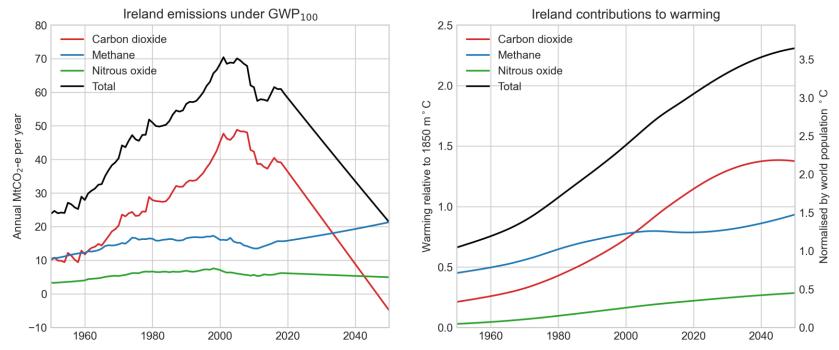
Net zero CO₂-e CO₂+N₂O & 22%/decade reduction in methane


CO₂ reductions required to have the same impact

Net zero CO₂-e in 2035 & 3%/decade reduction in methane


Extra 7 MtCO₂- e_{100} /year reduction in methane emissions in 2050 = 622 MtCO₂ avoided CO₂ emissions

Net zero CO₂-e in 2035 & 3%/decade reduction in methane


Treating methane emissions as CO₂-equivalent (GWP₁₀₀) understates impact of these reductions by a factor >3

3%/decade = 203 MtCO₂- e_{100} avoided emissions by 2050

Undervaluation matters, because failure to reduce methane would negate impact of CO₂ reductions

Net zero CO₂-e CO₂+N₂O & 10%/decade increase in methane

NET ZERC

OXFORD

Framing climate policy in terms of warming outcomes rather than emissions inputs

- Policy anomalies under "input based" accounting:
 - A crop farmer who converts to forestry to contribute to reducing global temperature by removing CO_2 from the atmosphere would be rewarded.
 - A livestock farmer who contributes to reducing global temperature by reducing methane emissions would not be.
 - Both farms may have identical impacts on global temperatures.
- In pursuit of a temperature goal, we need to:
 - Penalize actions that contribute to increasing global temperature,
 - **Reward** actions that reduce global temperature, and
 - **Ensure** reductions are permanent

Framing climate policy in terms of warming outcomes rather than emissions inputs

- Recognize that climate impacts primarily depend on warming, not "CO₂-equivalent" emissions.
- Set a **separate, ambitious but realistic target** for reducing methane emissions, recognizing their temperature impact:
 - 3%/decade decline in methane emissions \approx no additional warming
 - Additional 1 MtCO₂- e_{100} /year reduction in methane emission rate ≈ 85 MtCO₂ avoided (not too precise: "a bit less than 100 MtCO₂")
- Align incentives with temperature outcomes.
- **Invest** in research and innovation to lock in progress.

